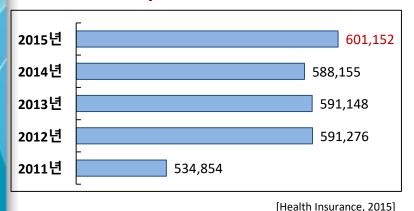
The 16th U.S.-Korea Forum on Nanotechnology: Nanosensors Related to Human Cognition and Brain Research & Nanomedicine Focusing on Single Cell Level

WEARABLE HUMAN EMOTION MONITORING SYSTEMS

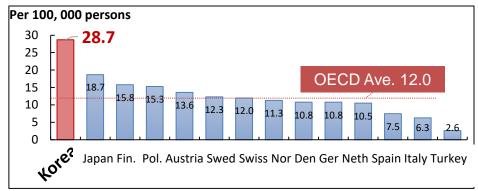
23 September 2019

Young-Ho Cho

Nano Sentuating Systems Laboratory Bio&Brain Engineering Department


Cell bench Research Center

KAIST



Mental Health and Human Emotion

Domestic Depressive Disorder (persons)

OECD Suicide Rate (persons)

[OECD.STAT, Health Status Data, Statistics and Indicators for 34 Countries, 2012*,2013]

Domestic Accidental Crime Ratio

(over total crime, %)

[Police, 2015]

Domestic Mental illness and Socio-economic Loss

(Youth Puberty/Misconduct,

Elderly/Menopause Climacteric, etc.)

Mental Illness Experience [보건복지부 2012년]	Socio-economic Loss [삼성경제연구소, 2013]
1 out of 4 (27.6 %)	20.066 Trillion Won

Monitoring of the Physiological Signs of **Human Mental Health and Emotional Status**

Human Status

Output (Results)

Brain Mind

(Reason, Emotion:

Experience, Memory, etc.)

Human Status

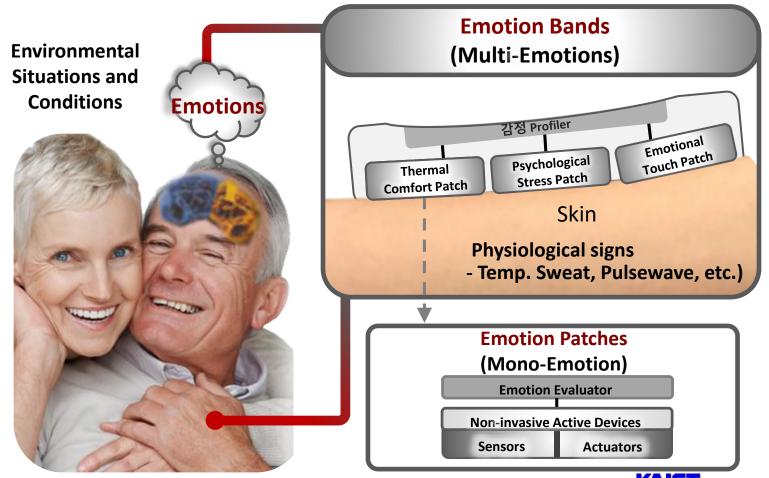
- Physical (Body)
- Mental (Mind)

Input (Cause)

Body Sensory

Environmental Situation and **Conditions**

(5 Senses)


Functions & Mechanisms

Input-Output Process and Causality Analysis

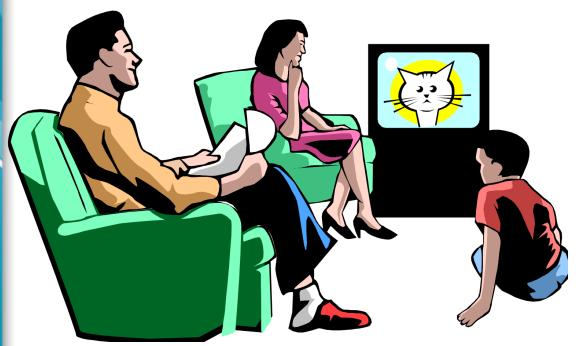
Signs & Symptoms Output Monitoring and Assessment (Physiological Signs of **Psychological Symptoms**)

Human Emotion Monitoring Patches

Non-invasive and Active Monitoring of Human Mental Health and Emotional Status based on the Physiological Signs on Human Skin

Skin Patches for **Human Mental Health & Emotion Monitoring** (Physiological Signs on Human Skin)

Device Issues:


- **Stability (Reliable Detection)**
- **Comfort (Conformal Contact, Skin Trouble)**

I. Thermal Comfort II. Emotional Touch III. Physiological Stress

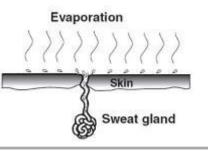
I. Thermal Comfort

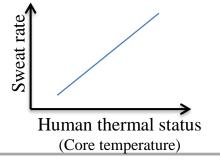
19°C (66.2°F)?

Environment > Human Monitoring

Sweat Rate:

A Skin Sign of Human Thermal Status


- What is "Sweat rate"?
- Quantitative change of human sweat amount
 - = Sweat mass generation / skin area / time $[g/m^2h]$


Physiological Meaning

Key indicator for human thermoregulatory response [4]

• Linear with human core temperature [5]

[4] K. Wilike, et. al., Int. J. Cosmet. Sci. (2007)

[5] Samual N. C., et. al., J. Appl. Physiol. (2009)

Sweat rate indicates

human thermoregulatory status objectively and quantitatively.

Ventilated Sweat Rate Measurement

Type	Forced Ventilation		Natural Ve	entilation
Device Structure [reference]	Piump RH Setisor Skim [Pietro S. et. al (2010)]	[Toshio O. et. al (1998)]	(a) Sensors RH T Skin [Robert I. et. al (2009)]	Skin Present (2015)
RH ventilation method	Forced ventilation by pump	Forced ventilation by ice condenser	Natural ventilation (Manual)	Natural ventilation (Automatic)
Detection principle	RH* difference at two points	RH difference at two points	RH rising rate	RH rising rate
Portable (Weight)	N/A (Pump)	~ 1 kg (Condenser)	150 g	63 g
Stable (Continuous measurement)	0	△ (Periodic ice removal)	△ (Manual initiation)	0
Measurement period	N/A	N/A	2~3 min	3 min
Sweat rate range (g/m²h)	~ 600	~ 250	~ 200	> 135

*RH: Relative Humidity (%)

Sweat Rate Monitoring Watch

Portable Sweat Rate Monitoring

integrated with thermo-pneumatic actuators for automatic ventilation

Previous	Problems	Present	Solutions
Forced ventilation devices	Bulky size (~ 1 kg)		Portable size (33 g)
Natural ventilation devices	Manual ventilation		Automatic ventilation
	Unstable to motion and external wind (< 0.5 m/s*)		Stable to motion and external wind (~1.5 m/s**)

^{*} Environmental microclimate

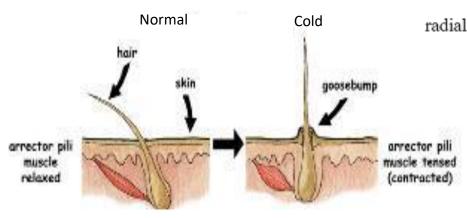
** Human walking speed

Cognitive Air-conditioning,

Human thermoregulatory status monitoring wrest watches, etc.

Integrated Sweat Sensors for sweat rates, humidity, pH and ions.

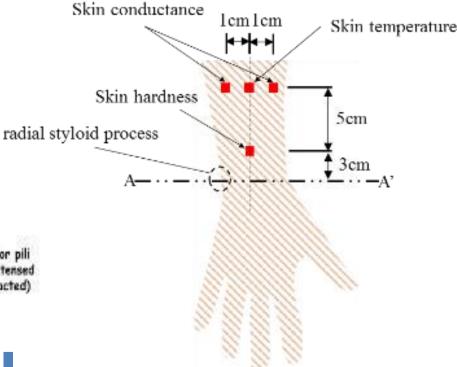
Skin Hardness Patches


Problems

- **Conventional physiological signs:**
 - Skin temperature and conductance
 - \Rightarrow Low accuracy: $R^2 < 0.7$

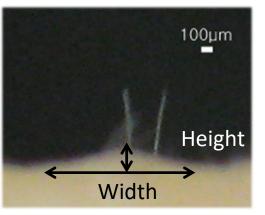
Physiological sign measurement

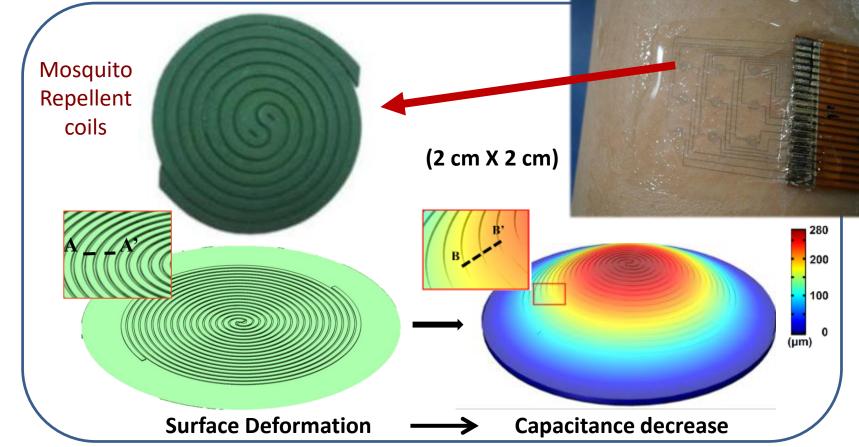
Solution


New physiological sign: Skin hardness

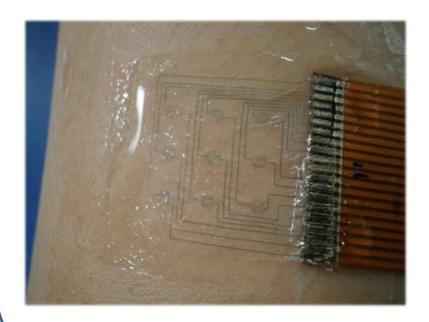
Accuracy: 17.4% 1

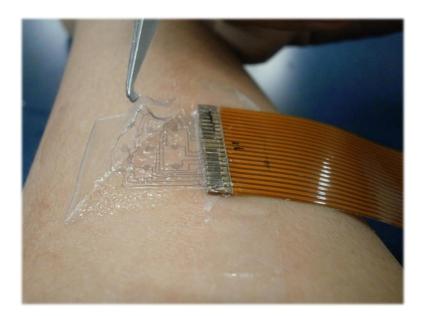
Error: 23.5%





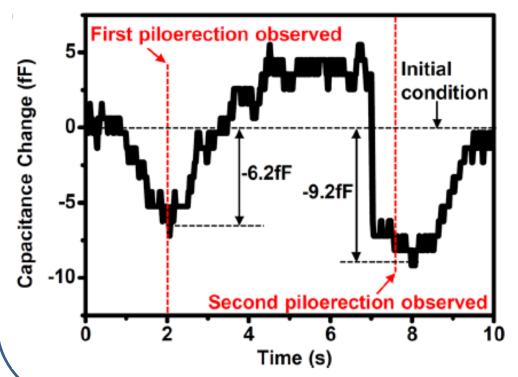
Goose Bump Detection Patches


Goose bumps


Width	~2 mm
Height	~200 µm
Density	>10/cm ²
Shape	Circular

Goose Bump Monitoring Patch

Attachable and Detachable Skin Patch (2 cm X 2 cm)



- Conformal skin contact (Van der Waals force)
- Easy removal (peeling off)

Goose Bump Monitoring

Two successive piloerection measurement

Subject	1 (male, age : 28)
Condition	Grabbing ice cubes

	Piloerection 1	Piloerection 2
Intensity	-6.2fF (~145μm)	-9.2fF (~194μm)
Duration	3.5s	3.5s

- Quantitative piloerection monitoring was demonstrated

HEALTH BEHAVIOR

These Goosebump Sensors Can Read Your Emotions

Alexandra Siffertin @ccolifortin June 25, 2014

Sounds crazy right? Read on

South Korean researchers are developing a technology that can measure your goosebumps-which are activated when you're cold, sure, but also when you're scared, moved or otherwise emotionally aroused. It sounds weird until you consider the potential applications for such a thing, some of which are fascinating while others seem unsettling when it comes to emotional privacy.

The Goosebump Sensor That Knows How You Feel

BY ANDREW RIDGWAY / JULY 27, 2014 11:48 AM EDT

EVERJEAN VIA FLICKR

data video-mining," which uses video cameras th mood shoppers as they pass through a given stor

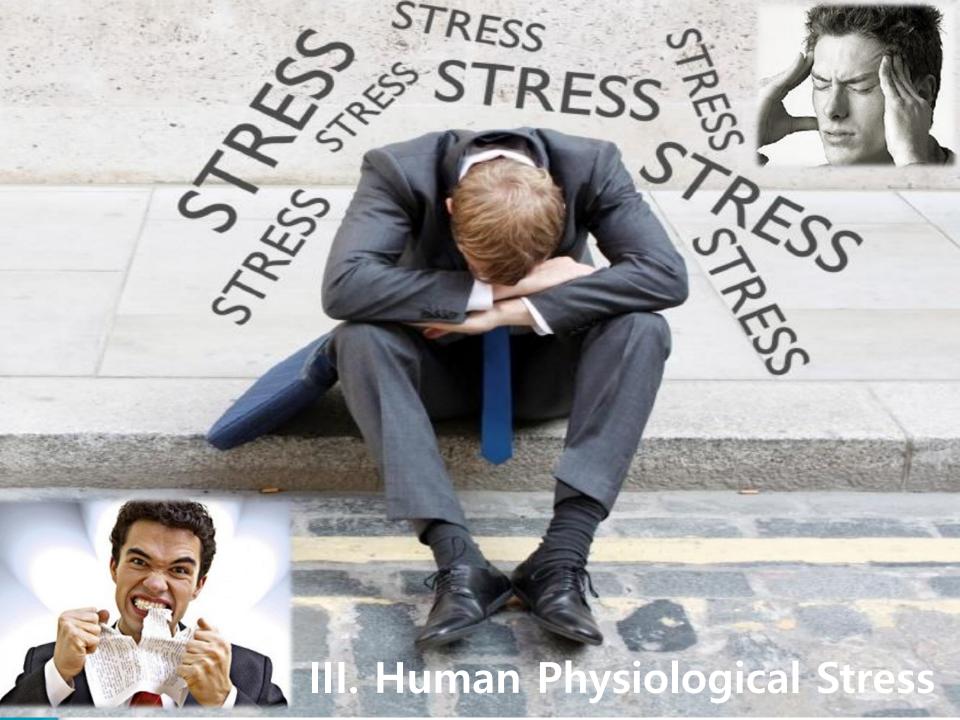
But what can goosebumps tell us? The obvious n biological method to combat chills. Goosebumps each of our hairs contract, and the areas surroun with a lot of fur, this retains heat. We don't have the same purpose for us-but it does clue us into uncomfortable level.

When it comes to getting goosebumps while water little more evolutionarily confusing, but research

Sections

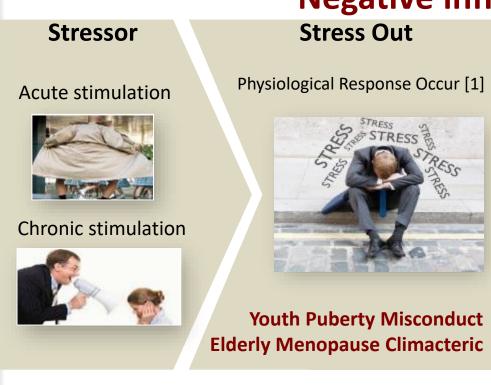
Technology

NEWS


Goosebump sensor developed by Korean research team

By Leo Kelion Technology desk editor

© 25 June 2014 Technology



Human Physiological Stress

Negative influences of stress

Stress monitoring (Mental heath management) in daily life

[1] Carlson, N., Foundation of Physiological Psychology, Pearson Education Asia, 2008.

[2] Mann, J., et al., European Psychiatry, 2010.

[3] Macan, T., et al., Journal of Educational psychology, 1990. [4] Pickering, T., et al., Current hypertension reports, 2001.

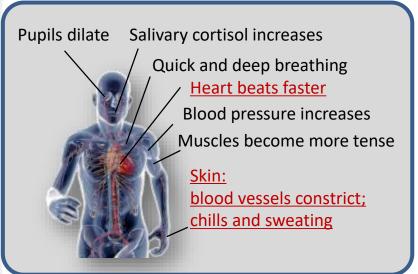
Stress Measurement Methods

Self report [5]

- Survey about subject's emotional state
- No consistency

Body fluid analysis [6]

- Measure cortisol concentration in saliva or blood
- No continuous monitoring



Physiological data analysis from multiple sensors [7]

- Measure fight-or-flight response of sympathetic nervous system
- Objective, Quantitative, and continuous monitoring
- [5] Horowitz, M., et al., Psychosomatic medicine, 1979.
- [6] Lee, J., et al., Medical Hypotheses, 2012.
- [7] Healey, J., et al., IEEE TRANSACTIONS ON INTEK/LLIGENT TRANSPORTATION SYSTEMS, 2005.

Stress Signs (Measurands)

Physiological stress responses

(Pulsewave) (Sweat) (Temperature)

Typical physiological skin signs for stress monitoring

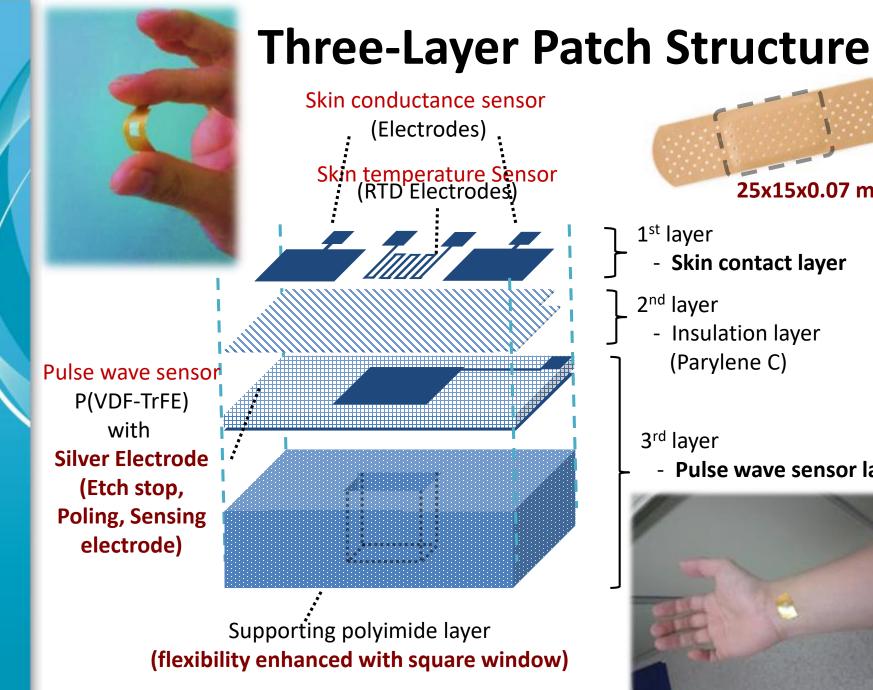
- A. Pulse wave
- Skin conductance
- Skin temperature

Measurands Type of stress	Pulse wave (HRV†)	Skin conductance	Skin temperature
Acute stress ^{††}	N/A	Phasic response amplitude个[15]	-
Chronic stress ^{†††}	$\frac{LF}{HF}$ \uparrow [1]	Tonic level个[15] frequency个[15]	Tonic level↓[16]
Stress vulnerability	$\frac{LF}{HF}$ \uparrow [14]	N/A	N/A

[†] Heart rate Variability(HRV):

Spectral analysis of p-p interval of pulse wave

^{† †} Acute stress: response within 1~3 second[n]


^{† † †} Chronic stress: stress which are not acute stress

^[1] Carlson, N., Foundation of Physiological Psychology, Pearson Education Asia, 2008.

^[13] Porges, S., Neuroscience and Biobehavioral Reviews, 1995.

^[14] Cacioppo, J., et al., Handbook of psychophysiology, Cambridge, New York (2007) Chap.8.

^[15] Kreibig, S., et al., Psychophysiology, 2007.

1st layer

- Skin contact layer

2nd layer

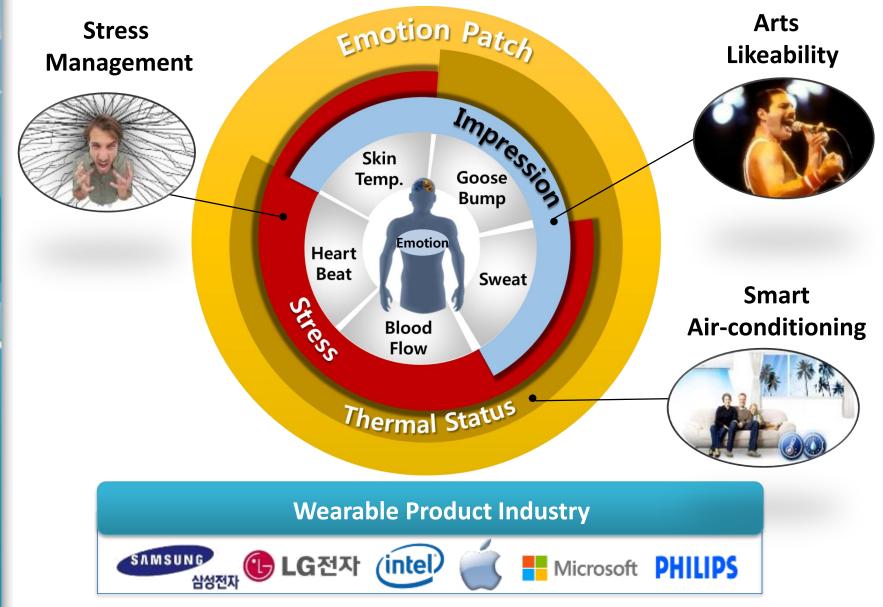
- Insulation layer (Parylene C)

3rd layer

- Pulse wave sensor layer

Wearable Human Emotion Monitoring Systems < U.S.-Korea Nano Forum, San Diego, 23&24 Se

Stress Monitoring Patches



- Integrated Multiple Sensors
- Skin contact area (371mm²): 1/125(0.8%) of the conventional device
- Window Fabrication Process:
 - Flexible patches

Headsets, Wrist/Arm/Hair Bands, Wrist Watches, Goggles/Glasses, etc.

Human Mono-Emotion Patches

Korea-U.S.A Collaboration Activity on N/MEMS and Circulating Tumor Cells

Activity	Since	Count	Institutions
Annual Symposium	2003	15 (1,260 Attendees)	KAIST(8), USB(5), UCSD(2)
MOU	2003	7	UCB(4), UCSD(3)
Research Projects	2004	8	UCB(2), UCSD(3), U Michigan(3)
Researcher Exchange	2003	14 (138 MM)	KAIST(11/128MM), UCB(3/10MM)
Joint Lecture	2004	1 (58 Attendees)	KAIST(11)+UCB(47)
Joint Publications	2006	8	

Korea Advanced Institute of Science and Technology

University of California at San Diego (UCSD)

University of Michigan

University of California at Berkeley (UCB)

Proposed Collaboration on Al-based Human Stress Monitoring and Management

N/MEMS

Bio-inspired skin patches

Artificial Intelligence

Al-based diagnostic indices and algorithm

Cognitive Science

Cognitive verification

- Joint Research
- **Annual Meetings**
- **Joint Publication and Patents**
- **Researcher Exchange**
 - **Subject Experiments**

Medical

Psychiatric verification

H/W Industry

Signal processing & clouding protocols

S/W Industry

Personal and group managements

Industrial Application

Emotional workers' stress monitoring (call center)

Medical Application

Mental disorder treatment and healthcare (hospital)

e to predicted stress

Thank you!